Hydrogenation of Carbon Dioxide into Light Hydrocarbons at Atmospheric Pressure over Rh/Nb₂O₅ or Cu/SiO₂-Rh/Nb₂O₅ Catalyst

F. NOZAKI, T. SODESAWA, S. SATOH, AND K. KIMURA

Department of Industrial Chemistry, Faculty of Engineering, Chiba University, Chiba 260, Japan

Received May 28, 1986; revised December 2, 1986

 Rh/Nb_2O_5 or $Cu/SiO_2-Rh/Nb_2O_5$ catalyst gives C_{2+} hydrocarbons consisting mainly of C_2H_6 and C_3H_8 with 30–50% selectivity at temperatures ranging from 250 to 350°C even at atmospheric pressure. Both the activity and the selectivity of the $Cu/SiO_2-Rh/Nb_2O_5$ catalyst, in which Cu/SiO_2 and Rh/Nb_2O_5 , having different selectivities, are piled up in two layers, are significantly greater than those of Rh/Nb_2O_5 alone. In the $Cu/SiO_2-Rh/Nb_2O_5$ double-layer catalyst, Cu/SiO_2 is placed at the inlet of catalyst bed and is responsible for the conversion of CO_2 into CO at a significant magnitude. Some characteristic data of supported Rh catalysts relating to chemisorption of CO_2 , CO, and H_2 were obtained by pulse-flow adsorption measurements. In order to speculate the reaction scheme, a relationship between the catalytic activity and the chemisorption data is discussed. © 1987 Academic Press, Inc.

INTRODUCTION

A large number of investigations have been made on the hydrogenation of CO into C_{2+} hydrocarbons (hereafter referred to as C_{2+} -HC) or alcohols and thus many interesting informations are now available (1).

In contrast the hydrogenation of CO₂ into C_{2+} -HC or alcohols has been less studied than that of CO. However, it has been recently reported that, in the studies on the interaction between CO₂ and H₂ or CO₂ and H₂O, hydrogenation using metal catalyst (2–5), metal oxide catalyst (6–9), or metal complex catalyst (10–12), photoassisted reduction (13) and electrolytic reduction (11, 14) are able to form C₂₊-HC or alcohols, although their rates of formation and selectivities are not always high.

On the other hand, the hydrogenation of CO_2 or CO into CH_4 has been widely investigated over various metal catalysts and is well known to occur readily in the CO_2-H_2 reaction rather than in the CO_-H_2 reaction (15–19). Influences of supporting materials upon Rh catalysts in the CO_2-H_2 reaction have been also reported by several workers (16–18).

In general it is not easy to form C_{2+} -HC

in the CO_2-H_2 reaction at atmospheric pressure. In preliminary experiments, however, we have observed that Rh/Nb_2O_5 catalyst give significant amounts of C_{2+} -HC even at atmospheric pressure. In this paper, details of the experimental results are reported together with a discussion of the relationship between catalyst activity data and chemisorption data.

EXPERIMENTAL

Catalyst preparation. Most of the catalysts used in this study was prepared by the usual impregnation method. Commercially available SiO₂, Al_2O_3 , and TiO₂ pellets (DIA Catalysts & Chemicals Ltd., 1-2 mm diameter \times 2-3 mm long) were used as a supporting material of the catalysts without further pretreatment. Nb₂O₅ \cdot *n*H₂O powder (Companhia Brasileira de Metalurgia e Meneracao Ltd.) was also used as a supporting material after washing with distillated water and drying at 150°C. These supporting materials were calcined at 400°C for 2 h in a stream of air. The BET surface areas were as follows: SiO₂: 380; Al₂O₃: 210; TiO₂: 35; and Nb₂O₅: 47 m²/g. ZrO₂ support was prepared by the hydrolysis of an aqueous $ZrOCl_2$ solution with NH₄OH. Amorphous $Zr(HPO_4)_2$ support was prepared from $ZrOCl_2$ and H_3PO_4 according to the method of Clearfield and Stynes (20). The BET surface areas of ZrO_2 and $Zr(HPO_4)_2$ were 67 and 79 m²/g, respectively.

The supported catalysts were prepared by impregnating SiO₂, Al₂O₃, TiO₂, Nb₂O₅, ZrO₂, or Zr(HPO₄)₂ with the prescribed amounts of an aqueous solution of Rh(NO₃)₃ or Cu(NO₃)₂ *etc.*, and then calcined at 500°C for 2 h in a stream of air. Several kinds of commercial catalysts were also used after calcining at 500°C.

Catalytic activity test. The hydrogenation reaction of CO_2 (or CO) was carried out in a conventional flow apparatus operating at atmospheric pressure. The reactor consisted of a 18-mm-diameter glass tube, and it contained a packed bed consisting of 1.0 g of the catalyst and small glass beads in the ratio of 1:10 by volume, thereby improving the isothermal conditions during the course of reaction. Before the start of the hydrogenation reaction, the catalyst was reduced with a stream of H₂ at 400°C for 2 h, and then cooled to the reaction temperature in a stream of H₂. A mixture of CO_2 (or CO) and H_2 was admitted into the reactor at a constant flow rate. After we had ascertained that the flow system had attained a stationary state, we began to analyze the product stream. The reaction products and the reactor feed were introduced at regular time intervals into two sets of gas chromatographic units: one was used for the quantitative analysis of produced hydrocarbons and it consisted of a 3-m column of Porapak R operating at 120°C, and the other was used for the analysis of C_1 compounds (CO₂, CO, and CH₄) and it was consisted of a 4-m column of Porapak R operating at room temperature.

The selectivity was defined as the fraction of CO_2 (or CO) converted to the respective product (the basis of carbon atoms of CO_2 or CO fed).

Adsorption measurement by pulse method. The chemisorption behaviors of CO_2 , CO, and H_2 onto the supported Rh catalysts were investigated by pulse-flow method. The CO_2 or CO adsorption measurements were conducted by the use of He as the carrier gas, whereas N_2 carrier was used in the H_2 adsorption measurements.

The samples of catalysts or supporting materials were crushed and sieved to obtain the 10-20 mesh fraction and then were weighed and packed into a 4mm-i.d.-diameter, 40-cm-long glass tube column. Prior to adsorption measurement, all samples were reduced at 400°C for 2 h in a stream of H₂. After the catalyst sample had been allowed to stand for 1 h in a stream of He or N_2 carrier gas in order to eliminate the hydrogen chemisorbed on the sample, it was cooled to the prescribed temperature in a stream of carrier gas. The pulse of CO₂ CO, or H₂, the volume of which was 0.56 ml (NTP) per pulse, was repeatedly injected into the sample column at regular time intervals by the use of doser consisting of a six-way valve system.

The elution curves of the repeated pulse injections were recorded as a function of pulse numbers by using a unit equipped with a thermal conductivity detector connecting directly with the exit of sample column.

RESULTS AND DISCUSSION

Activities and Selectivities of Various Catalysts in the Hydrogenation of CO₂

The results of catalytic tests for seven kinds of Al₂O₃-supported catalysts are shown in Table 1. The changes in activities and selectivities with process time were usually slight. Table 1 indicates that hydrogenation activity per unit weight of the catalysts decreases in this order: Ni > Rh \cong Ru > Cu > Pt > Pd > Re. The activity sequence should be defined by turnover frequencies; however, we leave unsolved the subject in this reaction. The selectivity differs from one another in such a way that it can be roughly classified into four groups: the catalyst giving CH₄ only (Ni, Rh, Ru, Pt), the catalyst giving CO only (Cu), the

TABLE 1

Conversions and Selectivities of Various
Al ₂ O ₃ -Supported Catalysts at Atmospheric Pressure

Catalyst⁵	Reaction temperature	Conversion of CO ₂	Selectivity to products (carbon basis, %)			
	()	(//)	CH₄	CO	C2+-HC	
Ni (0.5) ^c	250	30	100		_	
	300	78	100			
	350	91	100	_	_	
Rh (0.5) ^c	250	28	100	_		
	300	67	100	_	-	
	350	93	100		_	
Ru (0.5) ^d	250	22	100	_	_	
	300	70	100	_		
	350	87	100	_		
Cu (12) ^c	250	10	_	100	_	
	300	17	—	100		
	350	28	_	100	_	
Pt (0.5) ^d	250	8	100	—		
	300	17	100			
	350	23	100	_		
Pd (0.5) ^d	250	5	60	40		
	300	14	79	21		
	350	24	84	16	_	
Re (5.0) ^c	250	3	50	48	2	
	300	9	53	47	(trace)	
	350	19	61	39	—	

" Reaction conditions: catalyst weight: 1.0 g; total feed rate of reactant mixture ($CO_2 + H_2$): 100 ml/min; feed mole ratio of CO_2/H_2 ; $\frac{1}{4}$.

^b Number in parentheses denotes wt% in the catalyst composition.

 $^{\rm c}$ Laboratory-made catalyst prepared by the usual impregnation method.

^d Commercial catalyst supplied from Nippon Engelhard Co.

catalyst giving both CH_4 and CO (Pd), and the catalyst simultaneously giving small amounts of C_{2+} -HC with a large quantity of CH_4 and CO (Re).

All the Al₂O₃-supported metal catalysts, except for Re/Al₂O₃, showed no detectable formation of C₂₊-HC and alcohols in the CO₂-H₂ reaction at atmospheric pressure, similar to the results in the published papers (2, 21, 22). Fe₂O₃ (10 wt%)/Al₂O₃ catalysts was also tested under the same reaction conditions as for Table 1; however, it was found to be inferior to Re/Al₂O₃ in both activity and selectivity to C₂₊-HC.

Recently, in the $CO-H_2$ reaction at atmospheric pressure Phadke and Ko (23) reported that Fe/SiO₂ or Fe/Nb₂O₅ yielded C_1-C_5 hydrocarbons at a CO conversion level of about 1.5%. However, the CO₂-H₂ reaction was not given in their report.

It is already known that, in the hydrogenation of CO, Rh catalyst results in a high selectivity to C₂₊-HC when ZrO₂ or Nb₂O₅ is chosen as the supporting material (24). In the hydrogenation of CO_2 , therefore, we have attempted to investigate influences of supporting materials upon the activity of the supported Rh catalysts. The results are shown in Table 2. It has become apparent from Table 2 that the catalyst selectivity is significantly affected by the selection of supporting material. When Rh is supported on TiO_2 , the catalyst gives CH_4 only and has no selectivity to form C_{2+} -HC. In contrast, when Rh is supported on Nb_2O_5 , ZrO_2 , or $Zr(HPO_4)_2$, the supported catalyst develops an activity to form C_{2+} -HC and CO together with the formation of CH₄, although the conversion of CO_2 is relatively low compared to those of Rh/Al₂O₃ or Rh/ TiO₂ catalyst. In particular, it is worth noting in Table 2 that the selectivity to C_{2+} -HC in the Rh/Nb₂O₅ catalyst is as high as 30-40%. Since every supporting material itself did not promote any catalytic reaction, it was considered that the selectivity to form C_{2+} -HC was attributed to some effects of the interaction between Rh and supporting material. This characteristic effect probably arises from the so-called strong metal-support interactions (SMSI).

Influences of Rh Content and Reduction Temperature of Rh/Nb_2O_5 Catalyst upon the CO_2 - H_2 Reaction

Table 2 shows that, in the case of Rh/ Nb₂O₅ catalyst, both the conversion and the selectivity to C₂₊-HC increase with increasing reaction temperature. However, when it is raised to temperatures near to 400°C, the hydrogenation into CH₄ proceeds drastically and thus the selectivity to C₂₊-HC is exceedingly lowered.

The influence of CO_2/H_2 molar feed ratio upon the reaction is illustrated in Fig. 1. The conversion of CO_2 decreases with an increase in the CO_2/H_2 feed ratio, contrary to that the selectivity to C_{2+} -HC increases. This trend suggests that the concentration

TA	BL	Æ	2
----	----	---	---

Catalyst [*]	Reaction temperature (°C)	Conversion of CO ₂ (%)	Selectivity to products (carbon basis %)			C_2H_6/C_3H_8 (carbon basis)
			CH₄	CO	C ₂₊ -HC ^e	
Rh/TiO ₂	250	29	100	_		
	300	37	100		—	-
	350	47	100		-	
Rh/Nb ₂ O ₅	250	4	70	5	25	1.2
	300	8	59	7	34	1.3
	350	11	58	5	37	1.7
Rh/ZrO ₂	250	8	88	_	12	5.0
	300	19	96		4	
	350	30	100			
Rh/Zr(HPO ₄) ₂	250	2	60	10	30	9.0
	300	5	79	3	18	3.5
	350	8	86	4	10	0.9

Conversions and Selectivities of Rh Catalysts Supported on Various Supports at Atmospheric Pressure"

^a Reaction conditions are the same as those described in Table 1.

^b All of these preparations were made to contain 0.5 wt% Rh in the final catalyst.

 c C₂₊-HC consisted mainly of C₂H₆ and C₃H₈. The amounts of olefins and C₄₊-HC were negligibly small.

of hydrogen adsorbed dissociatively on the catalyst surface is enhanced with an increase in the partial pressure of H_2 . Thus, it seems to vary in such a way that the formation of CH_4 is further enhanced and the formation of C_{2+} -HC is oppositely depressed.

The yields of C_{2+} -HC and CO (defined as the product of total CO₂ conversion and the selectivity to C_{2+} -HC or CO) have varied with W/F, as is shown in Fig. 2. The yield of C_{2+} -HC increases monotonically with an increase in W/F; whereas the yield of CO increases with W/F, passes through a maximum, and then decreases. These facts suggest that the hydrogenation of CO₂ into C_{2+} -HC proceeds consecutively, passing through CO as a gas-phase intermediate.

The influence of Rh content upon the reaction is shown in Fig. 3. The conversion of CO_2 increases with an increase in Rh content and appears to gradually level off, while the selectivity to C_{2+} -HC remains almost unchanged in the range of Rh content up to 2 wt%.

Influences of the reduction temperature

in the catalyst preparation upon the activity and selectivity were investigated. When Rh/Nb_2O_5 catalyst was reduced with H₂ at

FIG. 1. Influence of feed composition upon CO₂ hydrogenation at atmospheric pressure over a Rh(0.5 wt%)/Nb₂O₅ catalyst. Reaction temperature: 300°C, catalyst weight: 1.0 g, total feed rate of reactant mixture (CO₂ + H₂): 100 ml/min. Curve 1: conversion of CO₂, 2: selectivity to C₂₊-HC.

FIG. 2. Influence of W/F upon yields of C_{2+} -HC and CO. Catalyst: Rh(0.5 wt%)/Nb₂O₅, reaction temperature: 300°C, feed ratio of CO₂/H₂: $\frac{1}{4}$. Curve 1: C₂₊-HC yield, 2: CO yield.

temperatures ranging from 300 to 450° C, subsequent CO₂-H₂ reaction was almost unaffected by the reduction temperature of catalyst. However, raising the reduction temperature up to 600°C drastically decreases the catalyst activity, although the selectivity to C₂₊-HC is almost unaffected. Possibly this is due to a lowering of the surface area of both Rh and Nb₂O₅. Iizuka *et al.* (25) described that sintering of Nb₂O₅ became appreciable at a temperature as high as 600°C.

Adsorption Behavior of CO_2 , CO, or H_2 onto the Catalysts

When a CO_2 pulse was injected into sample column, the elution curve depicted the different shapes depending upon the samples, suggesting characteristic differences in the adsorption behavior.

In the case of Nb₂O₅, the injected pulse of CO_2 passes through sample column without any detectable change in both the pulse shape and the pulse volume. Thus it can be said that Nb₂O₅ behaves like an inert substance, in analogy with the case when Al₂O₃ was tested as the sample. In contrast, Rh/ Nb₂O₅ catalyst strongly adsorbs a part of the injected CO₂ pulse and the resulting elution curve shows the complicated shape

consisting of the one sharp peak and the other rounded hump. The former sharp peak with a short retention time corresponds to CO_2 which passes through the sample column without being adsorbed. The other broad signal with a long retention time consists mainly of CO which is formed by the following reaction: $CO_2(g) \rightarrow CO(g)$ $+ O_{ads}$, where O_{ads} denotes the oxygen atoms chemisorbed irreversibly on the catalyst surface. In the case of Rh/Al₂O₃ catalyst, the elution curve indicates that only a part of the pulse-injected CO₂ flows out from the sample column and a large portion of CO₂ is irreversibly chemisorbed on the catalyst surface. The irreversible chemisorption of CO₂ is presumed to be produced by the following reaction: $CO_2(g) \rightarrow C_{ads} +$ $2O_{ads}$ or $\rightarrow CO_{ads} + O_{ads}$, where the subscript ads represents the dissociatively chemisorbed species which remains on the catalyst surface without desorption.

Adsorption measurements of CO and H_2 by the pulse-flow method have offered some characteristic data shown in Table 3. Table 3 indicates that both the CO and H_2 uptake in the Rh/Al₂O₃ catalyst are much larger than in the Rh/Nb₂O₅ catalyst. This is believed to be due to the fact that, in the

FIG. 3. Influence of Rh content in Rh/Nb₂O₅ catalyst upon the CO₂ hydrogenation at atmospheric pressure. Reaction temperature: 300°C, the other reaction conditions are the same as for Table 1. Curve 1: conversion of CO₂, 2: selectivity to C_{2+} -HC.

Some Characteristics Data of Supported Rh Catalysts Relating to Chemisorption							
Catalyst	Surface area of the support (m ² /g)	Uptake (ml/g) CO H ₂	(2H/CO) _{ads}	CO/Rh	2H/Rh		
Rh(0.5 wt%)/Nb ₂ O ₅ Rh(0.5 wt%)/Al ₂ O ₃	47 210	0.5 0.07 2.2 1.0	0.28 0.91	0.21 0.93	0.06 0.85		

TABLE 3

case of Rh/Nb₂O₅ catalyst, surface area of Nb₂O₅ support is relatively smaller than that of the Al₂O₃ support and hence Rh dispersion is inferior to the case of Rh/Al₂O₃ catalyst. It is further noteworthy in Table 3 that $(2H/CO)_{ads}$ ratio of Rh/Nb₂O₅ is significantly smaller than that of Rh/Al₂O₃. This fact suggests that Rh/Nb₂O₅ catalyst is encountered with a remarkable depression of hydrogen chemisorption, *viz.*, SMSI effect.

A Comparison of CO_2 - H_2 Reaction with $CO-H_2$ Reaction and Plausible Reaction Paths of the Hydrogenation of CO_2 into C_{2+} -HC

In order to compare the hydrogenation of CO_2 with that of CO, the hydrogenation of CO was carried out over the same catalysts

FIG. 4. CO hydrogenation at atmospheric pressure over Rh(0.5 wt%)/Al₂O₃ catalyst. Total feed rate of reactant mixture (CO + H₂): 100 ml/min, feed ratio of CO/H₂: $\frac{1}{2}$, catalyst weight: 1.0 g. Curve 1: conversion of CO, 2: selectivity to CH₄, 3: selectivity to C₂₊-HC.

as used in the hydrogenation of CO_2 . The results are shown in Figs. 4 and 5.

By comparison of the data of Rh/Al₂O₃ catalyst in Table 1 and Fig. 4, the conversions of CO₂ are found to be significantly higher than those of CO at the same temperature. That is, the hydrogenation rates of CO₂ into CH₄ are larger than those of CO. This fact agreed with the conclusions described in other published papers (15–19).

The other difference between CO_2-H_2 reaction and $CO-H_2$ reaction is noted in the selectivity. In the CO_2-H_2 reaction, Rh/ Al₂O₃ gives CH₄ only; in contrast in the CO-H₂ reaction, Rh/Al₂O₃ is able to give significant amounts of C₂₊-HC at temperatures below 350°C. In other words, suitable catalysts for C₂₊-HC formation in the CO₂-

FIG. 5. CO hydrogenation at atmospheric pressure over Rh(0.5 wt%)/Nb₂O₅ catalyst. Reaction conditions and symbols in figure are the same as for Fig. 4.

 H_2 reaction are not identical to those in the $CO-H_2$ reaction.

The adsorption mechanism of CO_2 or COover the Rh catalysts has been described by many workers (16–18). In the methanation of CO_2 , carbonyl hydride species (18) or reactive surface carbon (16) is found to be the key surface intermediate. In our present study, the detailed reaction scheme is still not understood because of the lack of IR measurements and surface residues during the course of CO_2 –H₂ reaction. However, we would like to tentatively speculate the reaction pathways over Rh/Nb₂O₅ catalyst as follows:

(a) denotes the adsorbed state, and CH_x , C_2H_{2x} , etc., represent the intermediate hydrogenated state.

Considering the results of adsorption measurements, the surface concentration of H(a) in the Rh/Nb₂O₅ catalyst is presumed to be relatively low. In addition, Rh/ Nb₂O₅ catalyst simultaneously forms CO as a gas-phase intermediate during the course of reaction. Thus, the condensation reaction of $CH_{x}(a)$ or the insertion reaction of CO onto $CH_x(a)$ leading to C_2H_6 or C_3H_8 is liable to be encountered on the surface of Rh/Nb_2O_5 catalyst. The Rh/Al_2O_3 catalyst, on the contrary, possesses a high concentration of H(a) and does not form CO. Consequently, in the hydrogenation of CO_2 , Rh/Al_2O_3 catalyst results in a preferential formation of CH_4 without leading to C_{2+} -HC.

The Hydrogenation of CO₂ over Cu/SiO₂-Rh/Nb₂O₅ Catalyst

The results obtained in the activity tests of the Cu/SiO_2 -Rh/Nb₂O₅ catalyst, in which Cu/SiO₂ and Rh/Nb₂O₅, which have

FIG. 6. CO₂ hydrogenation at atmospheric pressure over Cu(12 wt%)/SiO₂-Rh(0.5 wt%)/Nb₂O₅ catalyst being piled up in two layers. Weight of catalyst used: Cu/SiO₂ 3.0 g and Rh/Nb₂O₅ 1.0 g; the other reaction conditions are the same as those described in Table 1. Curve 1: conversion of CO₂, 2: selectivity to C₂₊-HC.

different selectivities are piled up in two layers, are shown in Fig. 6. In this Cu/ SiO₂-Rh/Nb₂O₅ double-layer catalyst, Cu/ SiO_2 was placed at the inlet of catalyst bed. By comparison of Fig. 6 and Table 2, it can be seen that both the conversion of CO₂ and the selectivity to C_{2+} -HC are significantly improved by application of a Cu/SiO₂-Rh/ Nb_2O_5 double-layer catalyst, compared with those of Rh/Nb₂O₅ alone. This result suggests that the hydrogenation of CO_2 to C_{2+} -HC proceeds via the consecutive steps of $CO_2 \rightarrow CO \rightarrow C_{2+}$ -HC and the combined action of Cu/SiO₂ (which is mainly responsible for the conversion of CO₂ into CO) with Rh/Nb_2O_5 (which plays a role in the transformation of CO into C_{2+} -HC with a high efficiency) has led to an excellent catalytic activity superior to the one-stage process by Rh/Nb₂O₅ alone.

REFERENCES

- For example, Sheldon, R. A., *in* "Chemicals from Synthesis Gas, Catalytic Reaction of CO and H₂." Reidel, Dordrecht, 1983.
- 2. Solymosi, F., and Erdöhelyi, A., J. Mol. Catal. 8, 471 (1980).
- Ramaroson, E., Kieffer, R., and Kiennemann, A., J. Chem. Soc. Chem. Commun., p. 645 (1982).

- 4. Iizuka, T., Kojima, M., and Tanabe, K., J. Chem. Soc. Chem. Commun., p. 638 (1983).
- 5. Weatherbee, G. D., and Bartholomew, C. H., J. Catal. 87, 352 (1984).
- Kiennemann, A., Kieffer, R., and Chornet, E., React. Kinet. Catal. Lett. 16, 371 (1981).
- Barrault, J., Forguy, C., Menzo, J. C., and Maurel, R., *React. Kinet. Catal. Lett.* 17, 373 (1981).
- Tatsumi, T., Muramatsu, A., and Tominaga, H., Chem. Lett. p. 593 (1985).
- Baussart, H., Delobel, R., Bras, M., Maguer, D., and Leroy, J., Appl. Catal. 14, 381 (1985).
- Naito, S., Ogawa, O., Ichikawa, M., and Tamaru, K., J. Chem. Soc. Chem. Commun., p. 1266 (1972).
- 11. Denise, B., and Snneden, R. P. A., *CHEMTECH*, February, p. 108 (1982).
- Behr, A., in "Catalysis in C₁-Chemistry" (W. Keim, Ed.), p. 169. Reidel, Dordrecht, 1983.
- Vjayakumar, K. M., and Lichtin, N. N., J. Catal. 90, 173 (1984).
- 14. Chem. Eng. News, July 8, p. 29 (1985).

- 15. Inui, T., and Funabiki, M., Chem. Lett., p. 251 (1978).
- Solymosi, F., Erdöhelyi, A., and Bánsági, T., J. Catal. 68, 371 (1981).
- Iizuka, T., Tanaka, Y., and Tanabe, K., J. Catal. 76, 1(1982).
- Henderson, M. A., and Whorley, S. D., J. Phys. Chem. 89, 1417 (1985).
- Solymosi, F., Tombácz, I., and Koszta, J., J. Catal. 95, 578 (1985).
- Clearfield, A., and Stynes, J. A., J. Inorg. Nucl. Chem. 26, 117 (1964).
- 21. Maatman, R., and Hiemstra, S., J. Catal. 62, 349 (1980).
- 22. Ferkul, H. E., Stanton, D. J., McCowan, J. D., and Baird, M. C., J. Chem. Soc., Chem. Commun., p. 955 (1982).
- Phadke, M. D., and Ko, E. I., J. Catal. 100, 503 (1986).
- 24. lizuka, T., Tanaka, Y., and Tanabe, K., J. Mol. Catal. 17, 381 (1982).
- Iizuka, T., Ogasawara, K., and Tanabe, K., Bull. Chem. Soc. Japan 56, 2927 (1983).